
1

BOSSA: A Decentralized System for Proofs of
Data Retrievability and Replication

Dian Chen, Haobo Yuan, Shengshan Hu,
Qian Wang, Senior Member, IEEE , and Cong Wang, Senior Member, IEEE

Abstract—Proofs of retrievability and proofs of replication are two cryptographic tools that enable a remote server to prove that the
users’ data has been correctly stored. Nevertheless, the literature either requires the users themselves to perform expensive
verification jobs, or relies on a “fully trustworthy” third party auditor (TPA) to execute the public verification. In addition, none of existing
solutions consider the underlying incentive issues behind a rational server who is motivated to collect users’ data but tries to evade the
replication checking in order to save storage resources. In this work, we propose the first decentralized system for proofs of data
retrievability and replication—BOSSA, which is incentive-compatible for each party and realizes automated auditing atop off-the-shelf
blockchain platforms. We deal with issues such as proof enforcements to catch malicious behaviors, new metrics to measure the
contributions, and reward distributions to create a fair reciprocal environment. BOSSA also incorporates privacy-enhancing techniques
to prevent decentralized peers (including blockchain nodes) from inferring private information about the outsourced data. Security
analysis is presented in the context of integrity, privacy, and reliability. We implement a prototype based on BOSSA leveraging the
smart contracts of Ethereum blockchain. Our extensive experimental evaluations demonstrate the practicality of our proposal.

Index Terms—Proofs of Retrievability; Proofs of Replication; Decentralized system; Blockchain.

F

1 INTRODUCTION

A S a new computing paradigm, cloud computing provides a
convenient approach for ordinary users to enjoy powerful

computing and storage resources. Users can outsource their data to
a cloud service provider to get rid of complex local data manage-
ment. Despite promising prospects, outsourcing data to a remote
server S also raises severe security concerns since it deprives
the physical control of the data owner. One of the challenging
problems is ensuring the correctness of data. A malicious server
may discard the data that is rarely accessed for the purpose of
saving resources, or cover up data loss accident for maintaining
reputation. In addition, S usually claims that the data will be stored
together with several replicas for ensuring high reliability [1], it
takes limited liability in their Service Level Agreements (SLAs)
[2], especially for the data loss. And recent accidents happened in
Tencent Cloud [3], other clouds [4] have already implied the fact
that S cannot be fully trusted.

Proofs of retrievability [5], [6], [7], [8], [9], [10], [11], [12]
and proofs of replication [13], [14], [15], [16], [17], [18], [19] are
two typical cryptographic methods allowing the server to prove
that the original files as well as all the replicas are correctly

• D. Chen and Q. Wang are with the Key Laboratory of Aerospace Informa-
tion Security and Trusted Computing, Ministry of Education, the School of
Cyber Science and Engineering, Wuhan University, Wuhan, Hubei 430072,
China, and also with the State Key Laboratory of Cryptology, P.O. Box
5159, Beijing 100878, China. (Corresponding author: Qian Wang.)
E-mail: {dianchen, qianwang}@whu.edu.cn

• H. Yuan is with the School of Computer Science, Wuhan University, Wuhan,
Hubei 430072, China.
E-mail: yuanhaobo@whu.edu.cn

• S. Hu is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, China.
E-mail: hushengshan@hust.edu.cn

• C. Wang is with the Department of Computer Science, City University of
Hong Kong 999077, Hong Kong.
E-mail: congwang@cityu.edu.hk

stored. In order to avoid keeping users on-line and free them from
expensive auditing tasks, the state-of-the-art solutions for proofs
of retrievability and replication heavily rely on a semi-trusted third
party auditor (TPA) to execute public verifications. However, such
methods suffer from the following two main drawbacks:

• Collusion Attack. The literature usually assumes that no
collusion happens between TPA and the server S . This strong
assumption may be easily corrupted in practice driven by
certain interests, and S can easily create fake proofs that
pass the verifications once it colludes with TPA. Furthermore,
from the users’ perspective, it is hard to tell whether or not
collusion happened.

• Corruption Attack. Dependence on an “always-online” TPA
is vulnerable to single point of failures caused by unpre-
dictable accidents, e.g., regional power outages, or malicious
hacking attacks, like DDoS.

We owe these vulnerabilities to the great control power of
TPA which plays a centralized role. Therefore, constructing a
decentralized framework for auditing can fundamentally solve the
above problems. The blockchain has been widely adopted for
replacing the third party in the fields like e-voting [20], auction
[21] and fair exchange [22] due to its non-repudiation and non-
tampering properties. Replacing the TPA with the blockchain
makes the whole auditing process trackable by users. As a result,
the users are able to verify each step of proofs retrievability and
replication. Moreover, the decentralized nature of the blockchain
improves the tolerance of single point failures. In summary, the
blockchain is a promising solution to defend against collusion
attack and corruption attack.

In addition, for the data replica service that aims to guarantee
the data reliability, the cloud may intentionally delete replicas
for saving storage resources without concerns of being caught.
Inspired by the idea of decentralized storage network (DSN) that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

tries to build a peer-to-peer network allowing peers buying and
selling idle disk space, decentralizing data replication makes it
much more difficult for the attackers to misbehave, as each step
for the data transmission, storing and deleting is recorded and
trackable.

1.1 Design Challenges and Our Solutions
In this work, we propose the Blockchain based OutSourcing
Storage and Auditing (BOSSA) scheme, a brand-new general
framework for proofs of retrievability and replication. BOSSA
separately stores the original data on the server and the corre-
sponding replicas on peers (also called farmers in BOSSA) of a
decentralized network atop blockchain, and integrities of them will
be checked respectively by carefully-designed smart contracts.
BOSSA can naturally defend against the collusion attack and the
corruption attack, while provides visibility-enabled data replica-
tion. BOSSA doesn’t heavily rely on a specific consensus model
like [23], which gives the opportunity that BOSSA can be built
on off-the-shelf blockchain systems supporting Turing-complete
smart contract [24], [25]. To design BOSSA, there are several
challenges we have to cope with.

First of all, simply combining existing proof of retrievability
schemes with the blockchain fails to achieve our desired goals
since the blockchain only supports simple functionality. The
most critical problem is that the blockchain cannot actively issue
challenges and reacts only based on received transactions. This
property allows the adversary to escape from auditing. To prevent
such lazy behaviors, we make use of the feature that blocks are
appended to the chain in an approximately-fixed rate, and propose
a time-restricted proof forcing both the cloud and farmers to prove
data availability.

Second, our scheme organizes peers, i.e., farmers, to store the
replicas of users’ data. However, farmers are not fully trusted
and may leave the network arbitrarily, which causes replicas loss,
damaging the reliability of replicas. To address this problem, we
design an incentive mechanism to motivate peers to store and
provide replicas when needed. Specifically, we define a reward
mechanism where farmers are periodically rewarded if they can
provide valid proofs of replicas on a regular basis. Meanwhile,
part of the reward is temporarily frozen until farmers’ promised
storage services expired, which discourages farmers from leaving
the network. To further motivate farmers to share replicas, we
define a metric called contribution rate, and connect farmers’
frozen reward with the contribution rate, such that only farmers
with 100% contribution rate can retrieve all the frozen rewards.

Third, most of blockchain platforms like Ethereum store
transactions in plaintext, any participant is able to retrieve the
information of transactions, including the inputs of smart con-
tracts, the intermediate results, etc. For an auditing system naively
built atop the blockchain, the open nature of the blockchain
enables the adversary to record proofs and recover the original
data. To prevent such privacy leakage, we incorporate privacy-
enhancing techniques for the generation of proofs while ensuring
their correctness.

1.2 Contribution
In summary, we make the following contributions:
• We propose a novel decentralized framework BOSSA for

proofs of data retrievability and replication. Our design
addresses security risks and caters to a more real-world

scenario, which has not been considered so far in existing
works.

• To guarantee the reliability of BOSSA, we propose a time-
restricted proof forcing S and farmers to prove data avail-
ability, and a reward mechanism based on the new metric
contribution rate to create a fair reciprocal environment.
Privacy-enhancing techniques are also incorporated to protect
users’ private data.

• We provide the security analysis for BOSSA with respect to
integrity, privacy, and reliability. A prototype of BOSSA is
implemented on Ethereum, and evaluated. The experimental
evaluations show that our proposal is feasible and incurs
tolerable overheads for each party.

1.3 Related Work
Proofs of Retrievability/Data Possession. Both Proof of Data
Possession (PDP) and Proofs of Retrievability (PoR) aim to ensure
that the outsourced data is stored on S correctly. Juels and
Kaliski proposed the first PoR scheme [9] and Ateniese et al.
[5] constructed the first PDP scheme. However, their schemes
do not provide public verification, which requires users keeping
on-line during the auditing process. Guan et al. [26] leveraged
the indistinguishability obfuscation to realize public verification,
but their scheme has poor performance due to the usage of the
indistinguishability obfuscation. Shacham and Waters [10] then
constructed a public verification scheme based on BLS signature
[27], but their scheme may cause privacy-leakage during the
auditing [12]. Armknecht [8], Xu [7] and Yang [6] proposed low-
cost public PoR schemes by modifying the private verification
scheme of [10], however, the TPA in their scheme holds the
secret key for auditing, which is not suitable to public blockchain
platforms.

Proofs of Replication. Different from PDP/PoR, Proofs of
Replication focuses on ensuring that the replicas of original data
are correctly stored on S as it claimed. Most proofs of replication
schemes are based on indistinguishable encryption/encoding [14],
[16], [28] or noticeable replica generation time [13], [18], [19],
[29]. MR-PDP proposed in [14] requires users to encrypt replicas
and upload them to S , and lets users audit the corresponding repli-
cas. Hao et al. [28] leveraged similar methods, and their scheme
supports public verification. Damgard et al. [16] generalized the
indistinguishable encryption/encoding based model which utilizes
a trapdoor function without which S cannot generate correct repli-
cas on-the-fly. However, these schemes bring heavy bandwidth
and computation costs to users, as the user encrypts/encodes and
uploads replicas. Other solutions let S generate replicas, but the
time cost of the replicas generation is noticeable, like RSA-based
puzzle combining linear feedback shift registers [13], chained
sequential encryption [17], and butterfly construction [15]. But
these schemes rely on an assumption that the replicas generation
is time-costly and cannot be parallelized. In BOSSA, we propose
a new paradigm in which a decentralized storage network atop
blockchain is used to store replicas. With the openness of the
blockchain, S’s action (i.e., data replication) is publicly recorded,
which is visible to the users. BOSSA neither brings heavy costs
to the user, nor relies on the time-assumption. In addition, this
paradigm also benefits S as its storage is reduced (most of clouds’
basic storage services promise to store several replicas in the same
region).

Decentralized storage. The main purpose of decentralized
storage schemes is to reuse idle storage resources of personal

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

computers (PC) by motivating PC users to share their unused
disk space. Existing decentralized storage network schemes, like
Storj [30], Sia [31], utilize Merkle tree-based data auditing scheme
whose proof size is related to the size of data, which causes
high communication cost for auditing large data. IPFS [32] plans
to offer an open global p2p storage network, however, it lacks
an incentive mechanism such that the storage resources may
be provided by few nodes. In addition, it also fails to provide
an auditing mechanism to check the integrity of data stored
by nodes. Filecoin [23] is built atop IPFS and provides the
aforementioned missing features. Except for incentive mechanism,
Filecoin leverages a computationally expensive proofs of replica
scheme [17] to ensure the correct data processing and builds
a consensus mechanism. Similar idea is also presented in [33],
[34], [35]. Compared to Filecoin, BOSSA is a more general
framework which is compatible with other blockchain platforms
like Ethereum.

1.4 Organization
The rest of the paper is organized as follows. Section 2 presents
some backgrounds. In Section 3 we define the model of our
scheme, threat model and security goals, before we introduce key
techniques of our scheme in Section 4. And concrete construction
of our scheme is described in Section 5. We analyze our scheme
in Section 6, evaluate the performance of our scheme in Section
7. We conclude the paper in Section 8.

2 BACKGROUND

2.1 Blockchain and Smart Contract
Blockchain, a cryptographic primitive derived from Bitcoin pro-
posed by Nakamoto Satoshi [36] in 2008, has been extensively
studied and adopted in both academies [37], [38], [39] and indus-
tries [40]. Blockchain can be viewed as a distributed block-wise
ledger allowing any participants to access and modify (appending
only). Generally speaking, it can be generalized as the following
formulation:

Blockn =Headern ‖ Transactions,

Headern =Hash(Blockn−1) ‖ Nonce ‖
Timestamp ‖ MerkleRoot.

A block consists of transactions’ data and a header which gen-
erally contains information for consensus and security: a Times-
tamp, a hash of predecessor’s block, a digest of transactions (i.e.
MerkleRoot), and a Nonce used for solving consensus puzzles.
Blocks are organized by the hash pointing to the predecessor
block, forming a hierarchically expanding chain. Cryptographic
mechanisms, like hashing, signature, guarantee that the blockchain
is non-repudiation and non-tampering, and consensus models, e.g.,
proof of work, proof of stake, motivate majority participants to
maintain only one correct chain.

Bitcoin, the initial blockchain implementation, provides re-
stricted customizable scripts, which limits it to a “cryptocurrency”,
instead of a general computational platform. The idea is later
brought by the following implementations such as Ethereum [24],
[41], HyperLedger [25], [42]. Ethereum, the first cryptocurrency
supporting general computing, provides a virtual machine (EVM)
and Turing-complete opcodes (EVM Bytes). The computation
results of smart contracts inherit the nature of trust from the
blockchain, hence Ethereum is widely applied in fields like e-
voting [20], auction [21], fair exchange [22], etc.

2.2 Proofs of Retrievability
A Proofs of Retrievability (PoR) scheme typically contains three
roles including a user, a remote server (also plays as a prover) and
a verifier (i.e., the TPA in public verification or the user itself in
the private verification scenario). To prove that data is retrievable,
a challenge-response protocol is executed between the prover and
the verifier, and the data retrievability can be guaranteed with a
high probability if the prover presents a valid response (proof). A
PoR scheme [10] can be defined as follows:

Definition 1. A PoR scheme consists of the following four algo-
rithms:
• Setup(1λ) → (sk, pk): This probabilistic algorithm is run

by the user. It takes the security parameter as input and
outputs key pair (pk, sk) for the scheme setup.

• Store(D, sk) → (D′, tag): The user runs this algorithm
to encode data and generate metadata for auditing. This
algorithm takes as inputs key sk and user’s data D, and
outputs tags tag and encoded data D′.

• Prove(D′, tag, pk, chal)→ φ: This algorithm is run by the
prover to prove data integrity. It takes as input the verifier’s
challenge chal, outsourced data D′, the corresponding tags
tag and public key pk, and returns a proof φ.

• Verify(φ, chal, pk[, sk]) → (>,⊥): This algorithm is run
by the verifier. It takes as input the proof φ, public key pk (sk
is needed in private verification), and determines whether the
prover stores data honestly.

3 PROBLEM FORMULATION

3.1 System Model
The system model of BOSSA is depicted in Fig. 1. Our system
involves the following entities: the cloud server S , the cloud user
U , and a decentralized network including nodes with two kinds
of roles: minersM and farmers F .M represents the nodes who
maintain the blockchain and execute smart contracts. F represents
the nodes joining in the decentralized storage network for renting
out their idle storage resources.

In BOSSA, S is willing to collect the original data from
U for accomplishing data analytics tasks such as prediction or
recommendation [43], [44], [45]. Similar to existing works [7],
[12], the data outsourced to S is kept in plaintext in order
to maximize their potential value (e.g., data mining). To save
resources and take full advantage of idle storage resources on F ,
S further outsources replicas to F . At the same time, U delegates
M to audit the original data on S and replicas on F , respectively.

The core functionalities of BOSSA are defined below.

Definition 2. The algorithms for proofs of retrievability and
proofs of replication in BOSSA are defined as follows:
• Setup(1λ) → (skU , pkU , skS , pkS): Given the security

parameter λ, this probabilistic algorithm outputs private and
public key pairs for U and S .

• U .Store(D, skU) → (D∗, aux): This probabilistic algo-
rithm takes the original data D and U ’s private key skU as
input, and outputs D∗ and the auxiliary information aux.

• S.Seal(D∗, ek) → R: This algorithm takes data D∗ re-
ceived from the user and an encryption key ek as input, and
outputs a replica R.

• S.Distribute(R, skS) → {Ri, aux′i}i∈[0,K): This algorith-
m, taking as input the replica R and S’s secret key skS ,
outputsK replica blocksRi with auxiliary information aux′i.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Replicas

Original
Data Replicas

Proof

D
ecen

tralized
 n

etw
o

rk

Farmers

MinerUser

Server

Financial
Rewards

Deposit

Fig. 1. System Model.

• S.Prove(D∗, aux) → φ: This algorithm takes as input the
data D∗ stored by S , the auxiliary information aux, then
outputs the proof φ in a privacy-preserving manner.

• F .Prove(Ri, aux
′
i) → φ′i: F calculates and outputs the

proof φ′i based on replica Ri and aux′i.
• VerifyX(pkX , φ)→ {>,⊥}: This algorithm verifies S’s or
F ’s proof φ and outputs either > (TRUE) or ⊥ (FALSE).

3.2 Threat Model
Following previous works [13], [14] we consider a rational S ,
who behaves correctly in most of the time unless misbehaving
brings more benefits, e.g., deleting data blocks seldom accessed
for resource-saving. The blockchain network can be regarded as
a trusted and public entity. Concretely, most of the computational
power of the blockchain is held by honest miners who will execute
smart contracts faithfully [46]. Any node in the blockchain net-
work can learn internal states and messages sent to the blockchain.

The farmers from the decentralized network, rent out their idle
disk space to store U ’s data replicas. We assume that there are
massive farmers, the number of which is enough to store all the
users’ replicas. The farmers may leave the network irresponsibly
if they lose the interest of storing replicas. Therefore, it is highly
necessary to guarantee the availability of replicas, i.e., motivating
the farmers to act honestly.

3.3 Security Goals
Storage Correctness. This property guarantees both outsourced
original data and replica are retrievable. We formalize this property
by adopting extraction algorithm in [10].

Definition 3. We say that the scheme guarantees storage cor-
rectness if the prover cannot forge a proof make the verifier
accept, and there is an extraction algorithm such that for an ε-
admissible prover (S or F) who can provide ε fraction of a
valid proof, an efficient extraction algorithm will recover data with
overwhelming probability.

Privacy Preservation. This property guarantees the nodes
from the decentralized network (includingM and F) cannot infer
any private information about the data.

Definition 4. We say the scheme achieves privacy preservation if:
1) for a probabilistic polynomial time (PPT) adversary who acts
as the verifier, namely M, it is computationally hard to extract
private information from the prover’s proof; 2) the replicas stored

in the decentralized network do not leak any private information
about the original data.

Replica Reliability. This property guarantees that the original
data can be recovered from replica blocks stored by F .

4 KEY TECHNIQUES

4.1 Building Blocks and Notations

4.1.1 Building Blocks

Definition 5. For a q-ary alphabet Σq , a (n, k, d) erasure code
scheme consists of two algorithms Encode : Σk → Σn and
Decode : Σn−d+1 → Σk. Typically, we say a code is a maximum
distance separable (MDS) code, if d = n− k + 1.

Definition 6. Let e : G1 × G2 → GT be a bilinear map where
G1, G2 and GT are three multiplicative cyclic groups of prime
order p. It has following properties:

• Given u ∈ G1, v ∈ G2 and x, y ∈ Zp, we have e(ux, vy) =
e(u, v)xy .

• e is non-degenerate, namely, e(g1, g2) 6= 1 where g1, g2 are
generators of G1 and G2 respectively.

• There is an efficient algorithm to compute e(u, v) for any
u ∈ G1, v ∈ G2.

In addition, we define the following collision-resist hash func-
tions:

• h1 : {0, 1}∗ → G1, it maps arbitrary string to an element of
the group G1.

• h2 : GT → Zp, it maps elements of GT to finite set Zp.
• h3 : {0, 1}∗ → {0, 1}λ, it maps arbitrary string to constant-

size bits, where λ is the security parameter.

Finally, we define {KGen,Enc,Dec} a symmetric encryption
algorithm with chose-plaintext-attack (CPA) security [47].

4.1.2 Other Notations

For ease of expression, we utilize L to represent the distributed
ledger in the blockchain system. L is stored and maintained byM.
We index an entity in the blockchain byX.Addr, e.g., U .Addr. In
the following discussion, Bnow represents the latest block number
of the blockchain.

The dictionary L.Roster stores (D, Bstart, Bend, services)
and is indexed by farmer’s address F .Addr. The attribute D
is defined as the deposit paid by F . The list services records
replicas stored by F . Bstart represents the time when F starts its
storage services, and Bend represents the time when the services
expire.

The dictionary L.Audit is indexed by name, the unique
identifier of U ’s file (see Section 5.2). The attributes of L.Audit
consist of the tuple (Blast,D, pkU , Itr, p, r). For a file name, the
attribute D in L.Audit(name) denotes the deposit paid by U
who outsources the file name. pkU is the public key of U . The
rest parameters will be explained later in our construction.

L.Replica is a dictionary taking namerep as the key. It
consists of the tuple (D, pkS , Itr, r, p,L), where D represents the
deposit provided by U , and pkS is the public key of S . The
list L consists of (totalAsk, totalReply,D, sigi, Blast) and is
indexed by F .Addr. The attribute D in L represents the deposit
paid by the farmer when it stores replicas. The other parameters
will be explained in our construction.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

TABLE 1
Notations

Notation Description

L Distributed ledger of the blockchain
X.Addr Address of party X in blockchain
name An unique identifier for outsourced original file
namerep An unique identifier for outsourced replica
services Services F has accepted
Bstart The block number when F starts its storage ser-

vices
Bend The block number when F ’s services are ended
Bsel The number of block chosen by S and F to derive

challenges
Bnow The number of latest block
Blast The block of the previous block that chosen as

challenge by S and F
D Deposit secured on the blockchain
p The price that U is going to give to F or S
r A radius used for relaxing strictness of the proof
Itr A time interval before both S and F present their

next proof

4.2 Design Innovations

To prove data retrievability and possession of replicas, BOSSA in-
corporates several auditing techniques—compact proofs of retriev-
ability of Shacham et al. [10] and privacy-preserving data auditing
of Wang et al. [12]. Meanwhile, we have also made some changes
that make our design more suitable for the blockchain environ-
ment. First, different from these schemes where the challenges
are generated by the auditor, we require that the provers (i.e.,
S and F) generate challenges by themselves since there are no
active auditors in our scheme. To ensure an unbiased challenge, we
leverage the latest block of the blockchain as a publicly traceable
and uncontrollable randomness source. In order to prevent lazy
behaviors of provers, we design a time-restricted proof mechanism
to force them to prove. Second, directly offloading replicas to the
decentralized network may cause privacy leakage. Moreover, if
some nodes storing a portion of replicas leave the network, it
could result in the uselessness of the whole replicas. Hence, we
propose an algorithm S.Seal to encode replica to be outsourced
and then encrypt the private data with the aid of the symmetric
encryption algorithm. Last but not least, we extend the structure
of the authenticator inside each replica block. Specifically, we add
an extra identifier of the replica and the indices of the replica block
into authenticators, to prevent F from pretending to be storing all
the data which is not at all. More details can be found in Section
5.2.

4.3 Time-Restricted Proof

We define the time-restricted proof as follows.

Definition 7. We use Blast to denote the number of the block
from which the prover generates challenges for calculating the
last valid proof, and Bsel denotes the block number of the block
picked for the new proof. Let Itr be a time interval represented
by the block numbers and a radius r represent the maximum gap
between Bsel and Bnow. Thus, during the verification procedure,

b0 b1 bn−2 bn−1 bn bn+1 bn+2 bn+3.

Blast Bsel Bnow

Itr r

Fig. 2. Illustration of time-restricted proof. The prover must present the
proof after Itr = n blocks. As long as the prover’s proof is accepted in
yellow blocks (i.e., bn+1, bn+2 as r = 2), it can be regarded as providing
a proof on time.

we say the prover provides proof on time only if the following
equation holds:

Blast + Itr = Bsel ≤ Bnow ≤ Blast + Itr + r.

We illustrate the time-restricted proof mechanism in Fig. 2. As
M cannot actively audit the prover (S and F), we demand that
the prover always generates challenges from the latest block (and
set Bsel = Bnow) and provides the proof toM periodically (after
Itr blocks). The radius r is set for tolerating the processing delay
ofM.

4.4 Contribution Rate

Considering the case that some farmers may be not willing to
contribute replica blocks when the data is needed, we define a
new metric, contribution rate, to measure F ’s contribution, which
also directly affects F ’s final reward.

Definition 8. Let totalAsk be the amount of replica requests
during F ’s services, and let totalReply be the amount of F ’s
responses. Then, the contribution rate cr is calculated as follows:

cr =

{
totalReply
totalAsk totalAsk > 0

1 totalAsk = 0
, cr ∈ [0, 1].

We give an example for a better explanation. When S gives
replica blocks to Fi, both totalAsk and totalReply are set to 0.
In the case that S needs replica blocks stored by Fi, the counter
totalAsk of Fi is incremented by 1, and only when Fi provides
the stored data to S , Fi’s counter totalReply is incremented by
1. Later, when Fi terminates the storage service, the monetary
reward it gets is its deposit multiplied by the contribution rate, and
the rest of the deposit is refunded to U .

4.5 Reward Mechanism

S will be rewarded for proving storage services. Suppose U and S
have come to an agreement about a price p, each time, S honestly
proves the integrity of data, U will pay p to S .

Likewise, we adopt the same reward mechanism for F with
an extra modification. Considering the following scenario, after
providing several proofs, F ’s reward has far exceeded its total
deposit, then it can quit the network arbitrarily without worrying
about the financial loss. Therefore, we set a factor ξ ∈ (0, 1)
to prevent this behavior. After a valid proof of F , M withholds
(1− ξ) · p of monetary reward instead of giving all of them to F .
The frozen part of monetary reward is refunded only when F ’s
service expires. A proper selection of ξ (e.g., ξ = 0.5) can make
F more sticky to the network without damaging its long-term
benefits.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Algorithm 1 S.Seal
Input: D := {m0,m1, . . . ,m|D|−1}, encryption key ek and

(n1, k1), (n2, k2) for encoding
Output: sealed replica R

1: reshape D into a (d |D|k1 e, k1) matrix and pad the last row with
0 if the width of the last row is less than k1

2: for i = 1, . . . , d |D|k1 e do
3: {m′i,j}j=0,...,n1−1 = Encek

(
Encode(n1,k1)(~mi)

)
, and

~mi = {mi,j}j=0,...,k1−1
4: end for
5: for j = 0, . . . , k1 − 1 do
6: denote the jth column of the encoded data as D′j :=

{m′0,j , . . . ,m′|D′j |−1,j} where |D′j | = d
|D|
k1
e

7: reshape D′j into a (d |D
′
j |

k2
e, k2) matrix and pad with zero

8: for i = 0, . . . , d |D
′
j |

k2
e − 1 do

9: ~mr
i,j = Encode(n2,k2)({m′i×k2+l,j}l=0,...,k2−1) and

~mr
i,j := (mr

i×n2,j
,mr

i×n2+1,j , . . . ,m
r
(i+1)×n2,j

)
10: end for
11: end for
12: R = {mr

i,j}i=0,...,d |D|×n2
k1×k2

e−1;j=0,...,n1−1

5 OUR CONSTRUCTION

5.1 Overview

Before diving into the details of BOSSA, we give an overview
of our idea. Recall the model specified in Section 3, BOSSA
provides a new paradigm for data integrity auditing and data
replication, which uses the blockchain network to periodically
audit the server and store data replicas. Specifically, for ensuring
the server to store data correctly, BOSSA adopts a conventional
PoR scheme but replaces the TPA with the blockchain. As the
blockchain only receives transactions passively and cannot issue
challenges to the server, the time-restricted proof is used to force
the server to provide proofs actively. Besides, another important
component of BOSSA is storing replicas among the peers in the
blockchain network, which are called farmers. Naively sending
replicas to farmers raises concerns about data privacy, reliability,
and retrievability. In BOSSA, the server encodes and encrypts
replicas for guaranteeing privacy and reliability, and the farmers
are spurred to prove they maintain the intactness of replicas.
Besides, the farmers are rewarded for providing valid proofs (i.e.
storing replicas honestly), and their rewards are also determined by
whether they could provide replicas when needed, which is mea-
sured by contribution rate. Farmers, who have 100% contribution
rate, can fully retrieve their reward.

In Section 5.2, algorithms of PoR are presented. In Section
5.3, we will walk through the details of BOSSA including data
outsourcing, data replication, proving and verification, replicas
retrieving, and rewarding.

5.2 Algorithm Specification

We give the specification of auditing algorithms. For the data
auditing, we leverage some cryptographic tools in [10], [12], with
modifications stated in Section 4.2.

Setup. In Setup, U firstly generates a key pair (spkU , sskU)
for signing. Then, it randomly picks the following elements:
xU

R← Zp, ḡU
R← G1, g∗

R← G1, and calculates υU = g2
xU

F0 F1 F2 F3 F4 F5 F6 F7

m0,0

m1,0

m2,0

m3,0

m0,1

m1,1

m2,1

m3,1

m0,2

m1,2

m2,2

m3,2

m0,3

m1,3

m2,3

m3,3

m0,4

m1,4

m2,4

m3,4

m0,5

m1,5

m2,5

m3,5

r0,0

r1,0

r2,0

r3,0

r0,1

r1,1

r2,1

r3,1

cm0,0

cm1,0

cm0,1

cm1,1

cm0,2

cm1,2

cm0,3

cm1,3

cm0,4

cm1,4

cm0,5

cm1,5

cr0,0

cr1,0

cr0,1

cr1,1

00

Fig. 3. A toy example of S.Seal. We give an example about sealing 22-
block data with (n1 = 8, k1 = 6) and (n2 = 6, k2 = 4). The light
grey blocks represent original data with two zero-padding blocks. The
dotted box in the upper right corner circles out blocks newly generated
in the first phase (line 3) of the Algorithm 1. Blocks generated in the
second phase (line 9) are circled in the dotted box below (it may have
a little discrepancies with Algorithm 1 since they are put together). For
simplification, we omit the representation of encryption. Each column of
data later is outsourced to different farmers.

based on a generator g2 of G2. For U , the public key is
pkU = (spkU , υU , g2, ḡU , e(ḡU , υU), g∗), and the secret key is
skU = (xU , sskU).

Besides, U also generates key pair which will be sent to
S during replica outsourcing. U picks a pair of signing keys
(sskS , spkS), a random element xS

R← Zp, a random element
ḡS

R← G1 and computes υS = g2
xS , where g2 is a generator of

G2. The public key of S is pkS = (spkS , υS , g2, ḡS) and the
secret key is skS = (xS , sskS).

Outsourcing original data. In U .Store algorithm, U pre-
processes its data D ∈ {0, 1}∗ before outsourcing it to S .
Firstly, U encodes D with the erasure codes [48] and gets
D∗. In this algorithm, U ’s data D∗ is interpreted as n block-
s, i.e., D∗ = (m0,m1, . . . ,mn−1). To identify the data, U
randomly chooses an element name from Zp as the identifier.
For each data block mi, U computes a unique authenticator
σi = (h1(Wi) · ḡmiU)

xU ∈ G1 where Wi = name ‖ i.
Furthermore, U generates a signature of the identifier name:
ω = ω0 ‖ SSigsskU (ω0) where ω0 = name ‖ n. Then D∗

and aux = ({σi}0≤i<n, ω) are sent to S .
Sealing replicas. To ensure reliability and protect privacy of

the replica, we propose the algorithm S.Seal. A detailed algorith-
m is presented in Algorithm 1, and a toy example is depicted in
Fig. 3. In this algorithm, data is firstly encoded using the erasure
code and encrypted with the symmetric encryption algorithm (i.e.
line 3 of the Algorithm 1). The encrypted data is divided into
pieces and will be stored by different farmers. Before being sent
to the farmer, each piece of the replica is encoded again (see line
9 of the Algorithm 1). The first encoding of S.Seal guarantees
data can be retrieved even small part of farmers are unaccessible.
The second encoding ensures each piece of the replica is also loss
tolerance, and also reduces the verification cost (see Section 6.1).
We leverage Reed-Solomon [48] code as the erasure code due to
its property of being a MSD code.

Replicas distribution. In this algorithm, S calculates authenti-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Idle

Notifying

Replicating

Fetching

Transferring

Recording

Logging OutExpired?

Storing

Verifying

ori-store
rep-store
rep-fetch

rep-transfer

rep-store-recruit

rep-fetch-request

rep-transfer-request

rep
-store-con

fi
rm

ed

rep
-fetch

-con
fi

rm
ed

rep
-tran

sfer-con
fi

rm
ed

ori-store-confirmed

logout-request Yes

No*-proof

*-proof-verified

Fig. 4. State diagram of smart contract instance onM.

cators for replicas. At first, the replica R is divided into K blocks,
and each block contains s sectors, i.e., R = {mr

i,j}0≤i<K,0≤j<s.
For each sector, S generates an authenticator σ∗i,j ← (h1(W ′i,j) ·
ḡ
mri,j
S)xS ∈ G1. In each authenticator, we use h1(W ′i,j), where
W ′i,j = namerep ‖ name ‖ i ‖ j, to represent mr

i,j sector.
Besides, for each replica block i, an extra signature Ωi is generated
by computing Ωi = namerep ‖ name ‖ i ‖ s ‖ sig, where
sig = SSigsskP (namerep ‖ name ‖ i ‖ s). Finally, S
distributes K replica blocks Ri = {mr

i,j}j∈[0,s) together with
aux′i = ({σ∗i,j}j∈[0,s),Ωi) to ith farmer, where i ∈ [0,K).

Proofs generation for the original data. S runs S.Prove to
prove that the original data is stored correctly. In this algorithm,
the privacy of the original data is well protected.
S takes the block Bnow as the randomness source, and then

calculates challenges {(i, νi)}i∈I , νi
R← Zp, I ⊂ [0, n). Then S

calculates µ′ =
∑
i∈I νimi and σ =

∏
i∈I σi

νi ∈ G1. To blind
µ′ and σ, S firstly chooses three random elements rσ , rm, ρ from
Zp and calculates T = e(g∗, g2)

rσ · e(ḡU , υU)
rm ∈ GT . For

hiding µ′, S computes µ = rm + γµ′, here γ = h2(T) ∈ Zp.
Then, S calculates Σ = σ · g∗ρ to hide σ, and calculates ς =
rσ + γρ to hide ρ. Finally, S sends φ = (ω, ς, µ,Σ, T, Bnow) to
M.

Proofs generation for replicas. The farmers prove that
they store replicas honestly through F .Prove. Here, We assume
that Fi stores the ith block of replica. Similar to S.Prove,
Fi generates challenges {(j, υj)}j∈J , vj

R→ Zp, J ⊂ [0, s),
from the newest block Bnow. Then Fi calculates an aggregated
authenticators σ∗i =

∏
j∈J(σ∗i,j)

νj ∈ G1 and an aggregat-
ed sampled sectors µ∗i =

∑
j∈J νjm

r
i,j . After that, F sends

φ′i = (Ωi, µ
∗
i , σ
∗
i , Bnow) toM.

Proofs verification. After receiving proof from S , M exe-
cutes VerifyS algorithm. Firstly,M verifies the validity of ω0 in ω
based on the signature SSigsskU (ω0). If the verification fails,M
returns⊥, otherwise, recovers the total block number n and name
from ω0. Once the validation passes,M computes γ = h2(T) and
utilizes the block number of blockchain provided by S to compute
the same challenges {(i, νi)}i∈I . ThenM checks the verification
equation:

T · e (Σγ , g2)
?
= e

((∏
i∈I

h1 (Wi)
νi

)γ
· ḡµU , υU

)
· e (g∗, g2)

ς
.

(1)
If the above equation holds, thenM outputs >, otherwise returns
⊥.

Verifying Fi’s proof is simpler than that of S . Firstly, M

Off Line Idle Proving

Logging Out

Storing? Transferring

Finalizing

StoringUploading

Expired?

Finalize
Service

Leave The Network

rep-store-enrolled

rep-fetch-confirmed

rep-fetch-request

rep-transfer-request/rep-store-recurit

rep-transfer-confirmed/
rep-store-confirmed

Time for Proving

rep-proof-verified

rep-transfer-confirmed

Yes

No
Wait for Service

Expired

No

lo
u

to
u

t-
co

n
fi

rm
ed

Yes

Fig. 5. State diagram of F . Texts in italic font style represent active
actions or events of F , while texts in sans serif font style are messages
from smart contract (i.e.M).

parses Ωi as namerep ‖ name ‖ i ‖ s ‖ sig. If sig is an invalid
signature from S for (namerep ‖ name ‖ i ‖ s), then M
aborts and returns ⊥, otherwise,M calculates the same challenge
{(i, νj)}j∈J like Fi, and verifies the following equation:

e (σ∗i , g2)
?
= e

∏
j∈J

h1
(
W ′i,j

)νj · ḡµ∗jS , υS
 . (2)

If the above equation holds, then the verification result is >,
otherwise ⊥.

5.3 Decentralized Network Construction

Based on the auditing algorithms in Section 5.2, in this part, we
give detailed construction of BOSSA. In BOSSA, each party can
be viewed as a state machine, and we illustrate the state diagram
of F andM in Fig. 4 and Fig. 5, respectively.

Farmer enrollment. The farmer who wants to join the net-
work should register before providing storage services. Specifical-
ly, the farmer F submits a capability Bend representing when its
services expire. To prevent F from leaving the network arbitrarily,
it must put a deposit into the network, which is recorded by D in
L.Roster(F .Addr). The list services is set to be empty during
F ’s enrollment. At the same time,M sets Bstart to be Bnow.

Outsourcing original data. We assume that both U and S
have reached an agreement with the following parameters: interval
Itrs, price ps, radius rs. U initializes a smart contract instance on
M with these parameters when it uploads the data to S . The
details can be found in Fig. 6.

Outsourcing replicas. The process for outsourcing replicas is
detailed in Fig. 6. Note that for ease of presentation, we assume
that S is required to generate one replica of the original data.

A malicious S may control several dummy farmers and
pretend to store replicas honestly, and generate proof on-the-fly
during auditing. To prevent such a sybil attack from S ,M selects
farmers randomly. Concretely,M calculates the hash of farmers’
addresses concatenated with the latest block, and checks whether
the hashed value is less than a threshold th. This guarantees that
the selection of farmers is randomized. Farmers can previously
calculate the hash to check whether it can be selected before it
sends the message toM. Besides, when F wants to store replicas,
M checks Bstart of F , namely Bstart + ∆ < Bnow. This
prevents a malicious S from generating dummy farmers on-the-fly.
It is clear that only when a malicious S pre-generates numerous
dummy farmers, can S performs sybil attacks, and it requires a
large amount of deposit.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Outsourcing Original Data:
U : 1: (skU , pkU , skS , pkS)← U .Setup(1λ)

2: (D∗, aux)← U .Store(D, skU)
3: send D∗, aux to S
4: put deposit of D to M and send ori-store, name,
pkU , ps, Itrs and rs toM

M : 1: upon receiving ori-store from U
2: initialize an empty item of L.Audit indexed

by name, set Blast as Bnow, and store
(Blast,D, pkU , Itrs, ps, rs) in L.Audit(name)

3: broadcast ori-store-confirmed
Outsourcing Replicas:

U : 1: send skS , pkS , name and namerep to S
2: put deposit of DU in M, and send rep-store,
namerep, pkS , Itrf , rf and pf toM

M : 1: upon receiving rep-store fromM
2: initialize an item of L.Replica indexed by
namerep, initialize an empty dictionary L and
store the tuple (DU , pkS , Itrf , pf , rf , L) in
L.Replica(namerep)

3: broadcast rep-store-recruit
F : 1: send deposit of DF together with rep-store-enroll,

namerep toM
M : 1: upon receiving rep-store-enroll from F

2: take the newest block as a PRF seed sd
3: assert h3(F .Addr ‖ sd) < th
4: assert L.Roster(F .Addr).Bstart + ∆ < Bnow
5: initialize a tuple (0, 0, DF , ⊥, ⊥)
6: store the tuple in L.Replica(namerep).L with the

index F .Addr
7: broadcast rep-store-enrolled

S : 1: generate an encryption key ek by KGen
2: R← S.Seal(D∗, ek)
3: {Ri, aux′i}1≤i≤K ← S.Distribute(R, skS)
4: pick K farmers and for each farmer:
5: sigi ← SSigsskS (h3(Ri))
6: send (Ri, aux

′
i, sigi) to the farmer

F : 1: store replica blocks locally
2: send rep-store-finalize, sigi toM

M : 1: upon receiving rep-store-finalize from F
2: update L.Replica(namerep).L(F .Addr) to

(0, 0,DF , sigi, Bnow)
3: add namerep into L.Roster(F .Addr).services
4: broadcast rep-store-confirmed

Fig. 6. Data outsourcing.

Proving for reward. Both S and F prove data integrity for
earning rewards through the time-restricted proof, and they are
rewarded based on the reward mechanism proposed in Section
4.5. If the proof is valid,M sets Blast to Bsel, then rewards the
provers and updates U ’s deposit. Note that M should check that
F ’s service has not expired to prevent F from cheating.

Fetching replica. When S tries to reconstruct the original data
from replicas, it sends message rep-fetch to M together with
namerep. Upon receiving the message from S ,M increases the
totalAsk of farmers by 1 who are in L.Replica(namerep).L,
and broadcasts a message rep-fetch-request for acknowledging
farmers. A rational farmer will share its local replica block Ri

Proving for Reward (S):
S : 1: set Bsel = Bnow, φ← S.Prove(D∗, aux)

2: send ori-proof, φ and Bsel toM
M: 1: on receiving ori-proof, extract name from φ

2: load Blast, Itr, r from L.Audit(name)
3: assert Blast+ Itr = Bsel ≤ Bnow ≤ Blast+ Itr+ r
4: if VerifyS(φ) = > then
5: L.Audit(name).Blast = Bsel
6: sent monetary reward of L.Audit(name).p to S

from U ’s deposit L.Audit(name).D
7: end if
8: broadcast ori-proof-verified

Proving for Reward (F):
F : 1: set Bsel = Bnow, φ′ ← F .Prove(R′i, aux

′)
2: send rep-proof, φ′ and Bsel toM

M: 1: on receiving rep-proof, extract namerep from φ′

2: get Blast from L.Replica(namerep).L(F .Addr)
and get Itr, r from L.Replica(namerep)

3: assert Bnow ≤ L.Roster(F .Addr).Bend
4: assert Blast+ Itr = Bsel ≤ Bnow ≤ Blast+ Itr+ r
5: if VerifyF (φ′) = > then
6: L.Replica(namerep).L(F .Addr).Blast =
Bsel

7: load p from L.Replica(namerep).p
8: deduct p from L.Replica(namerep).D, send

monetary reward of ξ · p to F and store the rest
into L.Replica(namerep).L(F .Addr).D

9: end if
10: broadcast rep-proof-verified

Fig. 7. F and S proving for reward.

with S for maximizing his profits (see Section 6.2.3). When S
receives enough replica blocks, it can reconstruct the original data
and validate replicas through the comparison with its previously-
stored hashes. For those farmers who contribute their local replica
blocks, S will notify M to increase totalReply with message
rep-fetch-finalize. And M broadcasts rep-fetch-confirmed for
notifying farmers.

Farmer logout. When a farmer wants to leave the network and
takes back all its deposit (including the frozen part of the reward),
the following conditions must be met: 1) it is not storing replicas
i.e., L.Roster(F .Addr).services = ∅; 2) the storage service it
promised should expire, i.e., Bend ≤ Bnow; 3) it proves correctly
each time i.e., 0 ≤ Bend − Blast < Itr. The first two conditions
allow the farmer to take back its deposit during the enrollment,
and the last one allows it to obtain the deposit for storing replica
blocks (which is refunded based on the contribution rate). Besides,
a new farmer must be found for restoring its replicas. Only after
transferring all the replicas to the new farmer, can it gets back the
frozen deposit. Details can be found in Fig. 8.

6 SYSTEM ANALYSIS

6.1 Choice of Challenge Size
The challenges against both S andF are based on the probabilistic
framework [5], through which the workload of the provers can
be noticeably reduced. This is because, during the auditing, the
provers randomly sample a subset of stored data, as required by
the verifier, instead of looking through all of the data. Meanwhile,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Replicas Transferring:
Fs : 1: calculate cm = h3(r) based on a randomly picked

seed r
2: send rep-transfer, namerep and cm toM

M : 1: upon receiving rep-transfer
2: load Itr from L.Replica(namerep), load Blast

from L.Replica(namerep).L(Fs.Addr), and load
Bend from L.Roster(Fs.Addr)

3: assert Bend ≤ Bnow
4: assert 0 ≤ Bend −Blast < Itr
5: store cm and publish namerep
6: broadcast rep-transfer-request

Fd : 1: upon receiving rep-transfer-request fromM
2: request r and replica block from Fs
3: access L.Replica(namerep) and load sigi from
L(Fs.Addr)

4: assert replica block is valid based on sigi
5: put deposit of D to M and send rep-transfer-

finalize, r, Fs.Addr and namerep toM
M : 1: upon receiving rep-transfer-finalize

2: assert cm = h3(r)
3: remove namerep from L.Roster(Fs.Addr)

.services
4: remove Fs from L.Replica(namerep).L
5: calculate contribution rate cr of Fs
6: refund L.Replica(namerep).L(Fd.Addr).D to
Fs based on the contribution rate cr, and rest of
deposit is refunded to U

7: add a new tuple (0, 0,D, sigi, Bnow) into
L.Replica(namerep).L(Fd.Addr)

8: broadcast rep-transfer-confirmed
Farmer Logout:

Fs: 1: give all of local replica blocks to new farmers
2: send logout-request toM for logout

M : 1: upon receiving logout-request fromM
2: load Bend from L.Roster(Fs.Addr)
3: assert Bend ≤ Bnow
4: assert L.Roster(Fs.Addr).services is empty
5: give Fs’s deposit back
6: broadcast logout-confirmed

Fig. 8. F leaves the network.

with the aid of unbiased-random challenges (usually picked by
the verifier), the cheater will be caught with an overwhelming
probability, if the data loss is beyond a bound.

Supposing that the prover tampers with n · t, t ∈ (0, 1) blocks
out of n data blocks in total, and he is asked to sample c blocks.
We let X denote a discrete random variable representing the
number of deleted blocks chosen during the proof, and we define
PX as the corresponding probability of X . Thus we have:

PX = P{X ≥ 1}
= 1− P{X = 0}

= 1− n− n · t
n

· n− 1− n · t
n− 1

· · · n− c+ 1− n · t
n− c+ 1

≥ 1− (1− t)c.

Clearly, if we fix the number of t, PX is independent of the
number of data blocks. For example, when t = 1%, PX can

reach 95% as long as the number of sampled blocks is not less
than 300 (see Fig. 9).

The workloads of proving and verification are related to the
number of challenges, namely the size of c. However, since both
original data and replica are encoded with the erasure code, we
can sacrifice storage space in exchange for efficient verification
and proving. Recall that a (n2, k2) encoding is applied on each
column of replica which is individually stored by farmers, and
the redundancy rate is n2/k2. If we raise the redundant rate, we
could take a less rigorous challenge with a smaller challenge size.
For example, if we take a 2× redundancy-rate encoding, we can
aggressively reduce challenge size to 7, as the data loss of 50%
can be detected with a 99% probability (as depicted in Fig. 9)
while the whole replica can still be recovered.

6.2 Security Analysis
6.2.1 Storage Correctness
Definition 9. The Computational Diffie-Hellman assumption is
define as follows. Given a tuple (g, gx, gy) ∈ G, where G is a
multiplicative cyclic group in order of p, g is a generator of G,
and x, y

R← Zp, then the probability that a PPT adversary A
outputs gxy is no more than a negligible probability ε:

Pr[A(g, gx, gy) = gxy] < ε.

Theorem 1. In the random oracle model, if CDH assumption
holds in bilinear groups, then BOSSA guarantees the storage
correctness.

Proof (sketch). Firstly, we prove that an honest S can always pass
the verification. To show that, for the equation (1), we have:

LHE =T · e (Σγ , g2)

=e (g∗, g2)
rδ · e (ḡU , υU)

rm ·

e

(∏
i∈I

(h1 (Wi)
νi · ḡmi·νiU)

xU ·γ · gργ∗ , g2

)

=e (g∗, g2)
rσ+ργ · e

(∏
i∈I

h1 (Wi)
νi·γ · ḡrm+γµ′

U , υU

)

=e (g∗, g2)
ς · e

((∏
i∈I

h1 (Wi)
νi

)γ
· ḡµU , υU

)
= RHE.

Thus, this property ensures the soundness of BOSSA, and guaran-
tees the interests of S . Then, we prove that for an ε-admissible
S who can correctly provide ε-fraction proofs, original data can
be extracted from it.

We assume the verifier controls a random oracle h2 and it
answers hash queries from S . Upon receiving the proof from
S , the verifier rewinds to the point when S queries h2(T),
and sends a different γ∗ = h2(T) to S . Having two different
proofs (µ,Σ, ς) and (µ∗,Σ, ς∗), the verifier extracts µ′ and σ by
calculating

µ′ =
µ− µ∗

γ − γ∗
=

(rm + γµ′)− (rm + γ∗µ′)

γ − γ∗
,

ρ =
ς − ς∗

γ − γ∗
=

(rm + γρ)− (rm + γ∗ρ)

γ − γ∗
,

σ =
Σ

g∗ρ
.

The pair (µ′, σ) is the proof for verification in [10], and based
on Theorem 4.2 in [10], if S forges both µ′ and σ, it cannot pass

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

100 101 102

Challenge Size

0.0

0.2

0.4

0.6

0.8

1.0

Da
ta

-L
os

s D
et

ec
tio

n
Pr

ob
ab

ilit
y

t = 0.05
t = 0.1
t = 0.5

Fig. 9. Data-loss detection probability vs. challenge size. We give an
illustration about challenge sizes for achieving various loss-detection
probabilities under different degrees of t.

the verification, except with a negligible probability. Then, based
on Theorem 4.3 in [10], if S gives at least ε valid proofs to the
verifier, the data can be recovered from the proofs through an
extraction algorithm.

As for an ε-admissible F , the storage correctness is achieved
based on theorems in [10].

6.2.2 Privacy Preservation
Theorem 2. In the random oracle model, if Enc is CPA-secure
and Diffie-Hellman problem is hard, BOSSA achieves privacy
preservation defined in Definition 4.

Proof (sketch). The replicas of original data are encrypted through
Enc before being distributed, hence participants of the decentral-
ized network cannot learn private information as long as they don’t
have the encryption key, and the auditing procedure also leaks no
private information. So, the point is that there should be no privacy
leakage during auditing S .

To prove privacy preservation holds for S , we show a simulator
without knowing µ′ and σ can provide a valid proof to M. We
assume it controls the random oracle h2 and answers queries from
M. To provide a valid proof toM, the simulator randomly picks
γ and µ′ ∈ Zp and σ ∈ G1, and calculates µ, ς and Σ. Then, the
simulator lets

T = e

((∏
i∈I

h1 (Wi)
νi

)γ
· ḡµU , υU

)
· e (g∗, g2)

ς

e (Σγ , g2)

and fills the random oracle h2(T) with γ. The simulator’s proof
is (T, ς, µ,Σ). It is clear that the simulator’s proof is valid if
the simulator answers γ when M queries h2(T). The simulator
knows nothing about µ′ and σ, it means the proof leaks no
information about S .

6.2.3 Replica Reliability
According the analysis in Section 6.2.1, as long as F provides
a valid proof, it can convince the verifier that the data is stored
properly. According to our reward distribution mechanism, re-
wards from the user will be given to F . Since partial rewards

TABLE 2
Overheads of Proof Generation and Verification for 100M Data

S F
File size (MB) 100 100
Sample blocks 300 480 7
Proving (ms) 33.2 48.8 10.8

Verification (gas) 27,063,392 42,979,515 997,151
USD 12.18 19.34 0.45

are temporarily frozen in the deposit of F , the more F proves, the
more deposit it will accumulate. When it wants to get the deposit
back, the deposit is refunded based on the contribution rate cr,
which is determined by whether F contributes its local replicas
when there is a request for replicas from S . Hence, a rational F
who is eager to maximize its profits will actively contribute its
local replica blocks.

Finally, we remark that as replicas are encoded by erasure
codes, when F goes offline accidentally during the replica fetch-
ing, BOSSA can still guarantee the reliability of the replicas, as
long as the geographical locations of the farmers are sufficiently
dispersed.

7 IMPLEMENTATION & EVALUATION

7.1 Implementation Setup

All the parties in our prototype are instantiated on a local Ubuntu
18.04 LTS with an Intel Core i5-8400 CPU, 12GB of RAM, and
a 7200 RPM Seagate 1 TB hard disk. We adopt Ethereum as the
underlying blockchain system in our implementation. The smart
contracts are written using Solidity and deployed to Ganache-cli (a
local Ethereum simulation) and Ropsten (an official testnet). Other
parties are implemented with JavaScript combined with C/C++.
We utilize Keccak256 as the hash function and 128-bit-of-security
Barreto-Naehrig curve as the ellipse curve. We use ate-pairing [49]
for bilinear paring since it is based on the elliptic curve suitable
for Ethereum. And we use Jerasure, an instance of Reed-Solomon
coding, for implementing erasure codes. To evaluate economic
costs, we take the exchange rate of 3 ·10−9 Ether per gas (namely
3 Gwei per gas), and 150 USD per Ether (December, 2019).

7.2 Circumventing Gas Limitation of Ethereum

To prevent malicious users from launching DDoS attacks by
sending infinite loops to miners, Ethereum uses gas to measure
overheads for running smart contracts, and sets a limitation upon
it. To circumvent the gas limitation, the implementation of our
prototype is slightly different from our design. In BOSSA, the
main gas costs are caused by the multiplications and hashes
related to the size of challenges. In our prototype, we split those
procedures into several sub-functions whose gas costs are below
the gas bound. For example, if it is required to perform 300 times
of G1 multiplications, we then run sub-functions 10 times, each of
which runs G1 multiplication 30 times. This enables us to avoid
exceeding the gas limitation. Note that this substitution increases
total gas costs since we must store temporary variables and trigger
multiple calls of the smart contracts.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

20 40 60 80 100
Data Size (M)

0

200

400

600

800
Pr

e-
Pr

oc
es

sin
g

Or
ig

in
al

 D
at

a
(s

)
Thread=1
Thread=2
Thread=4
Thread=6

(a)

20 40 60 80 100
Data Size (M)

0

250

500

750

1000

1250

1500

1750

2000

Pr
e-

Pr
oc

es
sin

g
Re

pl
ica

 (s
) Thread=1

Thread=2
Thread=4
Thread=6

(b)

20 40 60 80 100
Data Size (MB)

10−1

100

101

Pr
ov

in
g

Ti
m

e
(s

)

300 (I/O)
480 (I/O)

300
480

(c)

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480
Number of Sampled Blocks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ga
s C

os
ts

1e7

Gas Costs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

1% Data Corruption
5% Data Corruption

(d)

Farmer
Enrollment

Outsource
O. D.

Outsource
Replica

Fetch
Replica

Find
Farmer

Logout
0

1

2

3

4

5

Ga
s C

os
ts

×105

107,610
$0.05

345,176
$0.16

449,319
$0.20

283,887
$0.13

175,632
$0.08

25,143
$0.01

(e)

0 50 100 150 200 250 300
Size of K

105

106

107

Ga
s C

os
ts

Fetching Replicas
Replicas Transferring

(f)

Fig. 10. Time and gas costs of BOSSA. (a) Time costs for pre-processing original data using multiple threads vs. data size. (b) Time costs for
pre-processing one replica using multiple threads vs. data size. (c) The time costs of S ’s proof generation under different challenge sizes with and
without I/O. (d) The probabilities of failing to detect data corruption and the proof verification gas costs vs. the number of sampled blocks. (e) Gas
costs ofM’ actions when replica is stored by K = 10 farmers (O.D. stands for Original Data). (f)The gas cost of replica fetching and transferring
vs. the number of farmers storing replica.

7.3 Experimental Results

Pre-processing. We firstly test time for generating key pairs
(i.e., the U .Setup). The time cost is about 0.84ms, which is
negligible. In Fig. 10(a), we measure the time costs of U for
pre-processing the original data before outsourcing it to S (i.e.,
the U .Store algorithm) and Fig. 10(b) presents the time cost
of S to pre-process one replica before distributing it to farmers
(i.e., the algorithms of S.Distribute and S.Seal). We randomly
generate testing data ranging from 10MB to 100MB. The result
shows that the time cost increases linearly with the data size. The
time costs are dominated by authenticators generation, while both
replica encryption and replica coding incur negligible costs. The
generation of authenticators of 100M size costs about 164s on U ,
and 330s for a replica of 200M (as we encode original data into
double size) on S .

Proof generation and on-chain verification. The overheads
of proof generation on S and F are only related to the size of
the challenge. We test the overheads of sampling 7 sectors of a
replica block, and sampling both 300 and 480 (for about 99%
loss detection probability) blocks of original data as discussed
in Section 6.1. The results, shown in Table 2, demonstrate our
proving process is efficient, and it only costs tens of milliseconds.
In Fig. 10(c), we evaluate the I/O effect on the proof generation on
S . We can see that the data size greatly affects the time cost. This
is due to the fact that the time cost of proof generation is mainly
dominated by the I/O cost (e.g., reading data and authenticators
from hard drivers).

For the on-chain verification, the gas costs are 27, 063, 392
and 42, 979, 515 when sampling 300 blocks and 480 blocks (Fig.
10(d)), respectively. On the other hand, the gas cost of verifying

30 60 90 120150180210240270300330360390420450480
Number of Sampled Blocks

0

50

100

150

200

250

300

350

400

Ti
m

e
(s

)

35.5

123.0

61.9

131.1

70.661.1

181.6

129.3

229.1

122.9

219.5

281.3

380.3

303.7

154.2165.5

Fig. 11. Time cost of verification in Ropsten vs. the number of sampled
blocks.

a farmer’s proof is much lower, which is 997, 151 gas (i.e., about
$0.45). Note that this cost is for a single farmer, and the total costs
are K times larger when there are K farmers to store replica.
Since the underlying blockchain platform may affect the time cost
of the verification process, we further deploy the smart contracts to
Ropsten, an official public Ethereum testnet. We measure the time
cost from sending the proof to recording verification result on the
chain. The time cost for verifying S’s proof is presented in Fig.
11. It can be seen that although heavily affected by the throughput
of the testnet and the latency of the network, the time cost still
roughly increases with the number of the sampled blocks. Note
that techniques like sharding [50], [51] and state channel [52] can

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

further improve the efficiency of verification.
Interactions with the smart contract. In BOSSA, other

processes, such as initialization, data fetching, also need to interact
withM (through the smart contracts). In Fig. 10(e), we evaluate
the gas costs of those processes. We can see that those costs are
much lower (about several cents) than that of proof verification.
Meanwhile, among these processes, the costs of outsourcing
original data and replicas are the highest. This is caused by the
large call parameters (420B and 460B) for storing U ’s and S’s
public keys respectively.

Fig. 10(f) shows the impact of the number of farmers on the
gas costs when fetching and transferring replicas. The gas costs
increase linearly with the number of the farmers. This is due to
the limitation of data structures supported in Ethereum. We add
farmers’ addresses into an array, such that it needs to traverse the
whole array for searching a specific farmer. In addition, we have
to simultaneously increase the counter totalAsk for each farmer
by 1 when fetching replicas, and it charges an extra fee due to
the changing of the blockchain states. To avoid exceeding the gas
limitation, S can fetch replica blocks separately.

8 CONCLUSION

In this paper, we proposed BOSSA, a novel decentralized frame-
work for proofs of data replication and retrievability. Differ-
ent from existing schemes, BOSSA is built atop off-the-shelf
blockchain platforms, where each participant is fairly treated
and incentivized to faithfully follow the auditing protocol. We
proposed a proof enforcement mechanism to catch lazy behaviors,
and a new metric as well as a reward distribution mechanism to
create a fair reciprocal environment. Our experiments show that
BOSSA incurs tolerable costs and is feasible in practice.

ACKNOWLEDGMENTS

Qian Wang’s research was supported in part by the NSFC under
Grants 61822207 and U1636219, in part by the Outstanding
Youth Foundation of Hubei Province under Grant 2017CFA047,
and in part by the Fundamental Research Funds for the Central
Universities under Grant 2042019kf0210. Cong Wang’s research
was supported in part by Research Grants Council of Hong Kong
under Grants CityU 11212717 and CityU 11217819, and by the
Innovation and Technology Commission of Hong Kong under
ITF Project ITS/145/19. Shengshan Hu’s research was supported
by the Fundamental Research Funds for the Central Universities
under Grant 2020kfyXJJS075. Qian Wang is the corresponding
author.

REFERENCES

[1] “Data protection in amazon s3,” http-
s://docs.aws.amazon.com/AmazonS3/latest/dev/DataDurability.html.

[2] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao, “A
blockchain based witness model for trustworthy cloud service level
agreement enforcement,” in Proc. of INFOCOM. IEEE, 2019, pp. 1567–
1575.

[3] “Tencent cloud user claims $1.6 million compensation for da-
ta loss,” https://technode.com/2018/08/06/tencent-cloud-user-claims-1-6-
million-compensation-for-data-loss.

[4] “Google loses data as lightning strikes,”
https://www.bbc.com/news/technology-33989384.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc. of
CCS. ACM, 2007, pp. 598–609.

[6] A. Yang, J. Xu, J. Weng, J. Zhou, and D. S. Wong, “Lightweight and
privacy-preserving delegatable proofs of storage with data dynamics in
cloud storage,” IEEE Transactions on Cloud Computing, 2018.

[7] J. Xu, A. Yang, J. Zhou, and D. S. Wong, “Lightweight delegatable proofs
of storage,” in Proc. of ESORICS. Springer, 2016, pp. 324–343.

[8] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,
“Outsourced proofs of retrievability,” in Proc. of CCS. ACM, 2014, pp.
831–843.

[9] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in Proc. of CCS. ACM, 2007, pp. 584–597.

[10] H. Shacham and B. Waters, “Compact proofs of retrievability,” Journal
of Cryptology, vol. 26, no. 3, pp. 442–483, 2013.

[11] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 5,
pp. 847–859, 2011.

[12] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Transactions
on Computers, vol. 62, no. 2, pp. 362–375, 2013.

[13] F. Armknecht, L. Barman, J.-M. Bohli, and G. O. Karame, “Mirror:
Enabling proofs of data replication and retrievability in the cloud.” in
Proc. of USENIX Security, 2016, pp. 1051–1068.

[14] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp: Multiple-
replica provable data possession,” in Proc. of ICDCS. IEEE, 2008, pp.
411–420.

[15] I. Leontiadis and R. Curtmola, “Secure storage with replication and
transparent deduplication,” in Proc. of CODASPY. ACM, 2018, pp.
13–23.

[16] I. Damgard, C. Ganesh, and C. Orlandi, “Proofs of replicated storage
without timing assumptions,” in Proc. of CRYPTO. Springer, 2019, pp.
355–380.

[17] J. Benet, D. Dalrymple, and N. Greco, “Proof of replication,” Tech. Rep.,
2017.

[18] B. Fisch, “Poreps: Proofs of space on useful data,” Tech. Rep., 2018.
[19] B. Fisch, J. Bonneau, N. Greco, and J. Benet, “Scaling proof-of-

replication for filecoin mining,” Tech. Rep., 2018.
[20] A. B. Ayed, “A conceptual secure blockchain-based electronic voting

system,” International Journal of Network Security & Its Applications,
vol. 9, no. 3, pp. 1–9, 2017.

[21] S. Wu, Y. Chen, Q. Wang, M. Li, C. Wang, and X. Luo, “Cream: a
smart contract enabled collusion-resistant e-auction,” IEEE Transactions
on Information Forensics and Security, vol. 14, no. 7, pp. 1687–1701,
2018.

[22] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proc. of CCS. ACM, 2018, pp. 967–984.

[23] “Filecoin,” https://filecoin.io/filecoin.pdf.
[24] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
[25] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Work-

shop on distributed cryptocurrencies and consensus ledgers, vol. 310,
no. 4, 2016.

[26] C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu, “Symmetric-key
based proofs of retrievability supporting public verification,” in Proc. of
ESORICS. Springer, 2015, pp. 203–223.

[27] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Proc. of ASIACRYPT. Springer, 2001, pp. 514–532.

[28] Z. Hao and N. Yu, “A multiple-replica remote data possession checking
protocol with public verifiability,” in Proc. of ISDPE. IEEE, 2010, pp.
84–89.

[29] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay function-
s,” in Proc. of CRYPTO. Springer, 2018, pp. 757–788.

[30] “Storj,” https://storj.io/white-paper.
[31] “Sia: Simple decentralized storage,” https://sia.tech/sia.pdf.
[32] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.
[33] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repurpos-

ing bitcoin work for data preservation,” in Proc. of S&P. IEEE, 2014,
pp. 475–490.

[34] B. Sengupta, S. Bag, S. Ruj, and K. Sakurai, “Retricoin: Bitcoin based
on compact proofs of retrievability,” in Proc. of ICDCN. ACM, 2016,
pp. 1–10.

[35] S. Ruj, M. S. Rahman, A. Basu, and S. Kiyomoto, “Blockstore: A
secure decentralized storage framework on blockchain,” in Proc. of AINA.
IEEE, 2018, pp. 1096–1103.

[36] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

[37] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol,” in Proc. of CRYPTO.
Springer, 2017, pp. 357–388.

[38] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable and fair
realization,” in Proc. of INFOCOM. IEEE, 2018, pp. 792–800.

[39] S. Hu, C. Cai, Q. Wang, C. Wang, Z. Wang, and D. Ye, “Augmenting
encrypted search: A decentralized service realization with enforced
execution,” IEEE Transactions on Dependable and Secure Computing,
vol. PP, no. 99, pp. 1–1, DOI: 10.1109/TDSC.2019.2 957 091, 2019.

[40] “Libra,” https://libra.org/en-US/white-paper/.
[41] V. Buterin et al., “A next-generation smart contract and decentralized

application platform,” White paper, 2014.
[42] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,

A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proc. of EuroSys. ACM, 2018, pp. 1–15.

[43] S. Hu, L. Y. Zhang, Q. Wang, Z. Qin, and C. Wang, “Towards private
and scalable cross-media retrieval,” IEEE Transactions on Dependable
and Secure Computing, vol. PP, no. 99, pp. 1–1, DOI: 10.1109/TD-
SC.2019.2 926 968, 2019.

[44] Q. Wang, M. He, M. Du, S. S. M. Chow, R. W. F. Lai, and Q. Zou,
“Searchable encryption over feature-rich data,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 3, pp. 496–510, 2018.

[45] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and
dependable storage services in cloud computing,” IEEE Transactions on
Services Computing, vol. 5, no. 2, pp. 220–232, 2012.

[46] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and
A. Mohaisen, “Exploring the attack surface of blockchain: A systematic
overview,” arXiv preprint arXiv:1904.03487, 2019.

[47] J. Katz and Y. Lindell, Introduction to modern cryptography. Chapman
and Hall/CRC, 2014.

[48] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[49] “ate-pairing,” https://github.com/herumi/ate-pairing.
[50] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A

secure sharding protocol for open blockchains,” in Proc. of CCS. ACM,
2016, pp. 17–30.

[51] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: scaling
blockchain via full sharding,” in Proc. of CCS. ACM, 2018, pp. 931–
948.

[52] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites and state
channels: Payment networks that go faster than lightning,” in Proc. of
FC. Springer, 2019, pp. 508–526.

Dian Chen received the B.E. degree from
Wuhan University, Wuhan, China, in 2018. He
is working toward Master degree in the School
of Cyber Science and Engineering in Wuhan
University. His research interests include infor-
mation security and blockchain technology.

Haobo Yuan is an undergraduate student ma-
joring in Computer Science and Technology at
Wuhan University. His research interests include
information security and blockchain technology.

Qian Wang received the Ph.D. degree from the
Illinois Institute of Technology, Chicago, IL. He is
currently a professor with the School of Cyber
Science and Engineering, Wuhan University. His
research interests include AI security, data stor-
age, search and computation outsourcing secu-
rity and privacy, wireless system security, and
applied cryptography etc. He received National
Science Fund for Excellent Young Scholars of
China, in 2018. He is also an expert under Na-
tional “1000 Young Talents Program” of China.

He is a recipient of the 2018 IEEE TCSC Award for Excellence in
Scalable Computing (Early Career Researcher), and the 2016 IEEE
Asia-Pacific Outstanding Young Researcher Award. He is also a co-
recipient of several best paper awards from IEEE DSC’19, IEEE ICDC-
S’17, IEEE TrustCom’16, WAIM’14, and IEEE ICNP’11 etc. He serves as
associate editors for the IEEE Transactions on Dependable and Secure
Computing (TDSC), IEEE Transactions on Information Forensics and
Security (TIFS), and IEEE Internet of Things Journal (IoT-J). He is a
Senior Member of the IEEE and a Member of the ACM.

Shengshan Hu received the B.E. and Ph.D.
degrees in computer science and technology
from Wuhan University in 2014 and 2019, re-
spectively. He is currently an Associate Profes-
sor in the School of Cyber Science and Engi-
neering, Huazhong University of Science and
Technology. His research interest focuses on
privacy-enhancing technologies, AI security, and
blockchain.

Cong Wang is an Associate Professor in the
Department of Computer Science, City Univer-
sity of Hong Kong. His current research interests
include data and network security, blockchain
and decentralized applications, and privacy-
enhancing technologies. He is one of the Found-
ing Members of the Young Academy of Sciences
of Hong Kong. He received the Outstanding
Researcher Award (junior faculty) in 2019, the
Outstanding Supervisor Award in 2017 and the
President’s Awards in 2019 and 2016, all from

City University of Hong Kong. He is a co-recipient of the IEEE INFOCOM
Test of Time Paper Award 2020, Best Student Paper Award of IEEE
ICDCS 2017, and the Best Paper Award of IEEE ICPADS 2018 and
MSN 2015. His research has been supported by multiple government
research fund agencies, including National Natural Science Foundation
of China, Hong Kong Research Grants Council, and Hong Kong Innova-
tion and Technology Commission. He serves/has served as associate
editor for IEEE Transactions on Dependable and Secure Computing,
IEEE Internet of Things Journal and IEEE Networking Letters, and TPC
co-chairs for a number of IEEE conferences/workshops. He is a senior
member of the IEEE, and member of the ACM.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2020.3030063

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

